A case report on Atropine induced CNS side effects and Tachycardia

R Siddarama1, M Javeed Baig2, A Arjun Kumar2

1Department of pharmacy practice, P Rami Reddy Memorial College of Pharmacy, Kadapa, India, 516003
2MD Associate Professor, General Medicine, Rajiv Gandhi Institute of Medical Science, Kadapa, India, 516003

*Corresponding author: R. Siddarama
E-mail id: siddaramapharmd22@gmail.com

ABSTRACT

Atropine is an anti-cholinergic, prototype of drug obtained from Atropa Belladonna. It mainly blocks the muscarinic receptors which place a major role in performance of the brain for learning, memory, and orientation. In the therapeutic dose, atropine has a mild CNS stimulant effect but large doses can produce excitement, restlessness, agitation, hallucinations, coma and death. In therapeutic dose of atropine produces tachycardia through the blockage of M2 receptors of the heart. The use of atropine includes, brad arrhythmias, Severe bradycardia, organophosphate poisoning, 1st degree A-V block, salivary and bronchial secretion reduction, the extreme doses of atropine can causes the tachycardia, delirium, coma, flushed and hot skin, blurred vision, excitement, restlessness, hallucinations and ataxia. Here in this case report, a 30 years old female patient was developed excitement, hallucinations, restlessness, blurring of vision, photophobia, tachycardia, palpitation medullary paralysis and ECG abnormalities due to the atropine administration.

Keywords: Atropine, anti-cholinergic drug, ECG abnormalities, excitement, hallucinations, restlessness, palpitations.

INTRODUCTION

Atropine sulphate active substance is atropine which is obtained from Atropa Belladonna, it is a tertiary amine with half-life of 2.6 - 4.3 hours1,2. The plant Atropa belladonna is an intermittent herb belonging to the family of Solanaceae3. It is known to be tremendously toxic and the name of Atropa is derived from “Atropos” in Greek and Belladonna denods “beautiful women” in Italian4. The atropine blocks the muscarinic receptor acetylcholine, which plays an major role in the performance of the brain for learning, memory and orientation. In the occasion of the muscarinic blockade, the lack of acetylcholine causes dysfunctional memory, hallucination and disorientation5. Atropine has a stronger outcome than scopolamine in producing tachycardia and cardiovascular changes, although the peripheral effects of both atropine and scopolamine are the similar6,7. Atropine is an anticholinergic or antimuscarinic agent which competitively antagonizes acetylcholine at postganglionic nerve endings, consequently disturbing the receptors of the exocrine glands, smooth muscle, central nervous system and the cardiac muscle. Peripheral properties which include tachycardia, sweat and bronchial, lacrimal and gastric secretions, decreased production of saliva, nasal, decreased intestinal motility and inhibition of micturation. The uses of atropine include brad arrhythmias, Severe bradycardia, organophosphate poisoning, 1st degree A-V block, salivary and bronchial secretion reduction. The mechanism of atropine induced tachycardia till not known but tachycardia may result from vagal inhibition and induce angina pectoris in patients with coronary heart disease3. The extreme doses of atropine can causes the tachycardia, delirium, coma, flushed and hot skin, blurred vision, excitement, restlessness, hallucinations and ataxia. Paradoxical bradycardia might consequence from doses less than 0.5 mg of atropine. Side effects may include palpitations, nausea and vomiting, dysrhythmias, headache, dizziness5. Atropine is a tertiary amine and it freely enters in to the CNS. The high doses of atropine stimulate and then discourage the medulla and higher cerebral centres in the body7.

CASE REPORT

A 30 Years old female patient was admitted in ICU, RIMS, kadapa, with the chief complaints of burning sensation in the stomach, throat, vomiting 2-3 episodes and history of urination involuntary due to intake of organophosphate poisoning (Dimethoate). Past history of the patient was found to be intake of some amount of kerosene 1 year back. He was not known Diabetic, COPD, Asthma, Epilecy and CAD patient. On general Examination the patient was conscious and coherent. But looking she was very weak and her vitals were: BP-120/70 mm/Hg, PR-
108 bpm, CVS- S1,S2+ & S3, RR-12 Cpm, RS-BLAE+, P/A- soft, CNS- Pupils were not reacted to light. Her ECG report was found to be abnormal (ST segment depression in aVR, aVL at V1 to V4). On day 4 patient were developed excitement, hallucinations, restlessness, blurring of reason, photophobia, tachycardia palpitation, and medullary paralysis. Based on subjective (CNS side effects) and objective (ECG abnormalities) evaluation the patient was confirmed to have atropine induced CNS side effects and tachycardia as shown in figure-1.

Figure 1: Atropine induced Tachycardia (ST segment depression in aVR, aVL at v1 to v4)

Patient was treated with following medications which include antibacterial (ceftriaxone 1gm IV BD), parenteral anti-ulcer (Pantaprazole 40mg IV BD), Anti-cholinergic drug (Atropine 0.06Mg IV Tid) and intravenous fluids. We the Pharm-D students informed to the physician that, atropine has induced CNS and CVS side effect in the patient. In response to the adverse drug reaction occurred due to atropine, immediately the doctor had stopped prescribing the drug atropine.

ADR Analysis
After collecting complete history from the patient and followed by case details, it was suspected the patient had develop atropine induced CNS side effects and tachycardia. After analyzing the ADR profile of all drugs prescribed, it was found that the most suspected the drug for causing CNS side effects and tachycardia was "atropine" here we have done causality assessment by using naranjos scale, WHO – UMC ADR assessing scale as well as karch & lasgna scale. Results are recorded as shown in table 1. We have also assessed the severity, predictability & preventability scales thrown the modify HARTUING & SIEGEL severity scale, schumock & thoranton preventability scale.

Table 1: causality assessment of suspected ADR

<table>
<thead>
<tr>
<th>Suspected drug and reaction</th>
<th>Narranjos scale</th>
<th>WHO-UMC scale</th>
<th>Karch & LASGNA SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine induced CNS side effects and tachycardia</td>
<td>Probable ADR (6)</td>
<td>Probable / likely</td>
<td>Probable ADR</td>
</tr>
</tbody>
</table>

Severity –moderate level 4a
Predictability – Predictable ADR (type B)
Preventability- not preventable

DISCUSSION
Atropine, is an alkaloid used commonly used for antimuscarinic property. It acts as a competitive antagonist of acetylcholine at muscarinic receptors. It can be administered with different routes, include the eye drop formulation of atropine sulfate, used to induce cycloplegia and mydriasis. In overdose of atropine can cause tachycardia, agitation, delirium, dilated pupils, dry mucous membranes, dry skin, and hypoactive bowel sounds. These phenomenon have been describe even with attempted therapeutic ophthalmic use. Atropine is a belladonna alkaloid it produces the anticholinergic effects. Atropine systemic toxicity cause the characteristics of anticholinergic toxic syndrome including dilated pupils, dry skin, dry mucous membranes, tachycardia and urinary retention, other features are tachypnea, elevated body temperature, and central nervous system (CNS) stimulation obvious by confusion, restlessness, psychotic reactions (i.e. aggression, psychomotor agitation, and delirium) and infrequently seizures. In severe intoxication, the central stimulation might cause CNS depression, circulatory and respiratory failure, coma and death. The Diagnosis of anticholinergic toxicity may be complicated and generally based on current and post history, since exact laboratory tests are not regularly available and the extensive range of signs and symptoms cannot be present in every case. In addition, signs and symptoms of anticholinergic toxicity (i.e. altered mental status and hallucinations) may happen in other cases such as hypoglycemia, sepsis, psychiatric disorders, intracranial infections, intracerebral hemorrhage, and other poisonings.
in excess of dose, the patient can present with mydriasis, agitation, anxiety, confusion, hallucinations, delirium, tremor, hyper reflexia, paranoia, movement disorders, and seizures. Cardiac effects are primarily tachycardia and hypertension. All of these symptoms be present in our patient.13 The first treatment choice for atropine poisoning are gastrointestinal decontamination and antidote treatment. Gastric lavage can be useful particularly in the first hours of poisoning. Decontamination by activated charcoal may be successful for poisons which are recognized to be absorbed by charcoal in the first hour of intake.14,15 However, it may be administered after one hour the patients who are taken anticholinergic drugs orally for delaying gastric alteration.16 Both peripheral and central anticholinergic symptoms can be treated by physostigmine, it’s a reversible cholinesterase inhibitor and the chosen agent for the control of peripheral and central anticholinergic symptoms including agitation and delirium.17,18 Intake of as little as a few drops of atropine in eye drop formulation be able to cause anti-cholinergic, or more particularly antimuscarinic, toxicity.19 The antimuscarinic toxidrome marks from blockade of the neurotransmitter acetylcholine at central and peripheral muscarinic receptors20.

CONCLUSION

The patients who are receiving atropine for the treatment of organophosphate poisoning should be closely monitored at regular intervals to find the development of central nervous system side effects, cardiovascular toxicity and other complications (ECG abnormalities) which help in prevention and better management of disease and therapy problems.

REFERENCES